Microsoft AI-900 Exam Practice Questions (P. 1)
- Full Access (246 questions)
- Six months of Premium Access
- Access to one million comments
- Seamless ChatGPT Integration
- Ability to download PDF files
- Anki Flashcard files for revision
- No Captcha & No AdSense
- Advanced Exam Configuration
Question #1
A company employs a team of customer service agents to provide telephone and email support to customers.
The company develops a webchat bot to provide automated answers to common customer queries.
Which business benefit should the company expect as a result of creating the webchat bot solution?
The company develops a webchat bot to provide automated answers to common customer queries.
Which business benefit should the company expect as a result of creating the webchat bot solution?
- Aincreased sales
- Ba reduced workload for the customer service agentsMost Voted
- Cimproved product reliability
Correct Answer:
B
B

Implementing a webchat bot primarily benefits customer support operations by alleviating the volume of routine inquiries handled by human agents. This automation strategically redistributes workload, enabling staff to focus on more complex issues, thereby optimizing operational efficiency and potentially enhancing client satisfaction through faster response times to basic questions.
send
light_mode
delete
Question #2
For a machine learning progress, how should you split data for training and evaluation?
- AUse features for training and labels for evaluation.
- BRandomly split the data into rows for training and rows for evaluation.Most Voted
- CUse labels for training and features for evaluation.
- DRandomly split the data into columns for training and columns for evaluation.
Correct Answer:
B
The Split Data module is particularly useful when you need to separate data into training and testing sets. Use the Split Rows option if you want to divide the data into two parts. You can specify the percentage of data to put in each split, but by default, the data is divided 50-50. You can also randomize the selection of rows in each group, and use stratified sampling.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/split-data
B
The Split Data module is particularly useful when you need to separate data into training and testing sets. Use the Split Rows option if you want to divide the data into two parts. You can specify the percentage of data to put in each split, but by default, the data is divided 50-50. You can also randomize the selection of rows in each group, and use stratified sampling.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/split-data
send
light_mode
delete
Question #3
HOTSPOT -
You are developing a model to predict events by using classification.
You have a confusion matrix for the model scored on test data as shown in the following exhibit.

Use the drop-down menus to select the answer choice that completes each statement based on the information presented in the graphic.
NOTE: Each correct selection is worth one point.
Hot Area:

You are developing a model to predict events by using classification.
You have a confusion matrix for the model scored on test data as shown in the following exhibit.

Use the drop-down menus to select the answer choice that completes each statement based on the information presented in the graphic.
NOTE: Each correct selection is worth one point.
Hot Area:

Correct Answer:
Box 1: 11 -

TP = True Positive.
The class labels in the training set can take on only two possible values, which we usually refer to as positive or negative. The positive and negative instances that a classifier predicts correctly are called true positives (TP) and true negatives (TN), respectively. Similarly, the incorrectly classified instances are called false positives (FP) and false negatives (FN).
Box 2: 1,033 -
FN = False Negative -
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio/evaluate-model-performance

Box 1: 11 -

TP = True Positive.
The class labels in the training set can take on only two possible values, which we usually refer to as positive or negative. The positive and negative instances that a classifier predicts correctly are called true positives (TP) and true negatives (TN), respectively. Similarly, the incorrectly classified instances are called false positives (FP) and false negatives (FN).
Box 2: 1,033 -
FN = False Negative -
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio/evaluate-model-performance
send
light_mode
delete
Question #4
You build a machine learning model by using the automated machine learning user interface (UI).
You need to ensure that the model meets the Microsoft transparency principle for responsible AI.
What should you do?
You need to ensure that the model meets the Microsoft transparency principle for responsible AI.
What should you do?
- ASet Validation type to Auto.
- BEnable Explain best model.Most Voted
- CSet Primary metric to accuracy.
- DSet Max concurrent iterations to 0.
Correct Answer:
B
Model Explain Ability.
Most businesses run on trust and being able to open the ML ג€black boxג€ helps build transparency and trust. In heavily regulated industries like healthcare and banking, it is critical to comply with regulations and best practices. One key aspect of this is understanding the relationship between input variables (features) and model output. Knowing both the magnitude and direction of the impact each feature (feature importance) has on the predicted value helps better understand and explain the model. With model explain ability, we enable you to understand feature importance as part of automated ML runs.
Reference:
https://azure.microsoft.com/en-us/blog/new-automated-machine-learning-capabilities-in-azure-machine-learning-service/
B
Model Explain Ability.
Most businesses run on trust and being able to open the ML ג€black boxג€ helps build transparency and trust. In heavily regulated industries like healthcare and banking, it is critical to comply with regulations and best practices. One key aspect of this is understanding the relationship between input variables (features) and model output. Knowing both the magnitude and direction of the impact each feature (feature importance) has on the predicted value helps better understand and explain the model. With model explain ability, we enable you to understand feature importance as part of automated ML runs.
Reference:
https://azure.microsoft.com/en-us/blog/new-automated-machine-learning-capabilities-in-azure-machine-learning-service/
send
light_mode
delete
Question #5
HOTSPOT -
For each of the following statements, select Yes if the statement is true. Otherwise, select No.
NOTE: Each correct selection is worth one point.
Hot Area:

For each of the following statements, select Yes if the statement is true. Otherwise, select No.
NOTE: Each correct selection is worth one point.
Hot Area:

Correct Answer:
Anomaly detection encompasses many important tasks in machine learning:
Identifying transactions that are potentially fraudulent.
Learning patterns that indicate that a network intrusion has occurred.
Finding abnormal clusters of patients.
Checking values entered into a system.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/anomaly-detection

Anomaly detection encompasses many important tasks in machine learning:
Identifying transactions that are potentially fraudulent.
Learning patterns that indicate that a network intrusion has occurred.
Finding abnormal clusters of patients.
Checking values entered into a system.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/anomaly-detection
send
light_mode
delete
All Pages